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Geometric Analysis “Defined”
DDMA

My (slightly) idiosyncratic view:

I Not simply analysis on manifolds, instead Geometric measure
theory and variational analysis plus pieces of PDE, harmonic
analysis, nonlinear functional analysis.

I My interests: geometry and analysis of sets, functions and
measures in low and high dimensions. Includes things like the
concentration of measure phenomenon.

I And: Do all this with a view to the illumination of very
challenging data problems

In the rest of these slides I look at two examples of geometric
analysis following form this viewpoint.
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Exact Solutions of the L1TV functional
DDMA

The L1TV functional:

F (u) ≡
∫

|∇u|dx + λ

∫
|u − d|dx

I Not strictly convex: F (u) is not strictly convex ⇒ we do not
have uniqueness!

I Homogeneity: u is a minimizer for d → Cu is a minimizer for
Cd

I Existence: Since TV (u) is lower semi-continuous in L1,
F (u) is convex and coercive.
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Intuition for the TV seminorm
DDMA

Consider F (u) ≡
∫

|∇u|pdx

F (u) = sp(∆x) = (s∆x)p

(∆x)p−1 = dp(∆x)1−p

(p > 1) F (u) →
∆x→0

∞ discontinuities are avoided: smooth u preferred,

(p < 1) F (u) →
∆x→0

0 discontinuities cost nothing: step u preferred,

(p = 1) F (u) = d only jump magnitude “counts”, no bias towards smooth or step.
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TV(χΩ)
DDMA

Suppose u is a characteristic function of a set Ω? Can we see what
TV(u) will be?

Ω

0

1

Using the figure of an approximate characteristic function, we can
convince ourselves that TV(u) is simply the length of the boundary
of the set Ω.
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Wild Ω?
DDMA

Suppose Ω is really wild? The “argument” above depended on Ω
being nice. What can we conclude about TV(χΩ) in this case?

I There is a set ∂∗Ω called reduced boundary of Ω that
coincides with the boundary that test functions can see

I TV(χΩ) picks up the boundary that integration against smooth
test functions “sees”.

I (There are details we are sweeping under the rug!)
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Back to L1TV: a useful property
DDMA

L1TV again:

F (u) ≡
∫

|∇u|dx + λ

∫
|u − d|dx

Chan and Esedoglu show that:

I d = χΩ ⇒ for some Σ, u = χΣ is a minimizer.
I More Precisely: If u is any minimizer of F (u) then for almost

all µ ∈ [0, 1], χ{x:u>µ} is also a minimizer of F (u), to get a
minimizer that is a characteristic function.
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What L1TV reduces to for sets ...
DDMA

u = χΣ and d = χΩ ⇒ F (Σ) ≡ F (χΣ) = Per(Σ) + λ|Σ∆Ω|
I u = χΣ →∫

|∇u|dx = perimeter of Σ
I u = χΣ, d = χΩ →

λ
∫

|u − d|dx = λ
∫

|χΣ − χΩ|dx = λArea(Σ M Ω)

Σ

Ω

0

1
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Example of Nonuniqueness
DDMA

If Ω = B 2
λ

then u = αχB 2
λ

is a minimizer for any α ∈ [0, 1].

I We can concoct Ω’s whose solutions Σ(λ) have, as λ → ∞,
an infinite number of non-uniqueness points ...
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A Solution Envelope
DDMA

Theorem
If Br ⊂ Ω where r ≥ 2

λ
, then Br ⊂ Σ.

I edges are perfectly preserved if they can be touched by 2
λ

balls
in and out

I boundary of Σ is in the envelope between inside and outside 2
λ

balls
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Idea of Proof
DDMA

Per(    |    )B B rr

1 = |          |

Br

Ω

1
2

Σ

ΣBrPer(    |    )

Σ c

B rΣ

\ Σr2 = |         |B

U

ΣrB

c

Per(   |     )

E(Σ ∪ Br) − E(Σ)

= (Per(Br) − λ|Br|) + (λ|Br ∩ Σ| − Per(Br ∩ Σ))

=
(
2πr −

2

R
πr2

)
+

(
2

R
πρ2 − 2πρ∗

)
= 2πr(1 −

r

R
) + 2πρ(

ρ

R
−

ρ∗

ρ
)
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Denoising shapes
DDMA

Theorem
B 2

λ
⊂
∼

Ω → B 2
λ

−ε ⊂ Σ

Per(    |    )B

B

B

B

B r

1 = |          |

Br

\rB Σ2 = |         |

r Σ c

r Ωc Σ cU U

3 = |                   |

r ΩcU U

Σ4 = |                  |

U

r Ωc= |            | = 3 + 4

1
2

Σ

ΣBrPer(    |    )

B rΣ

U
ΣrB

c

Per(   |     )Ω

\rB Ω|         |Per(    |    )Per(    |    )

E(Σ∪ Br)− E(Σ) ≤ 2πr(1−
r

R
)+2πρ(

ρ

R
−

ρ∗

ρ
)+2λ|Br \Ω|
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Discussion: n > 2 and Allard’s Results
DDMA

We use simpler means to arrive at some conclusions about
minimizers of one functional in Allard’s class:

I Results hold in Rn: 2
λ

→ n
λ

I Allard gets a critical radius of r = n−1
λ

, this is a local
curvature. Our r = n

λ
is somehow global.

I We use the structure theorem for sets of finite perimeter,
therefore n is unrestricted.

I Allard uses the more powerful regularity theory developed for
minimal surface problems: his n ≤ 7.
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Symmetric Rearrangements
DDMA

Idea: Use image geometry to generate robust measures.
Application: validation of simulation codes.
What is the distance between the following experiment and
simulation?
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Invariant, Robust Measures
DDMA

Idea: generate a rigid transformation invariant signature by looking
at signatures derived from the Steiner symmetrizations or
symmetric decreasing rearangements.

I Symmetric decreasing rearrangements: for f in Lp(Rn),
the symmetric decreasing rearrangement f∗ is the Lp(Rn)
function such that {f∗ ≥ y} is a disk centered at the origin in
Rn such that Hn({f∗ ≥ y}) = Hn({f ≥ y}). We will
denote the mapping from f to f∗ by R.

I ||f ||p = ||f∗||p: Since Lp norms are integrals over areas of
level sets.

I ||∇f ||p ≥ ||∇f∗||p: used in applications to variational
problems.

I R is not continuous in W 1,p ...
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Simplest Use: Areas
DDMA

Easiest implementation: use the areas of the disks as a function of
height of the disk (f∗) as a signature.

Now compare signatures between images.
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Computing and using these area signatures
DDMA

I Regularize: run mean curvature flow a bit on the simulated
images and the experimental images.

I Compute area signatures: compute areas of the level sets.
I 1-D Warping: use a simple warping method to compare the

1-D signatures.
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The experimental and simulated images
DDMA
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Area signatures
DDMA
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Results: distance curves
DDMA

The registration problem is in fact a very good test of quality of the
metric – validated by expert judgement
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